

Today's Outline

- Figuring out what nutrients we need.
- ≻Phosphorus
- ➢ Potassium
- ➢ Nitrogen
 - The main nutrient of concern in conservation tillage systems.

Ames Iowa.

EXTERNAL FACTORS CONTROL PLANT GROWTH

Air
Temperature
Light
Mechanical support
Nutrients
Water

What nutrients should I apply?

- Liebig's Law of the Minimum
- Focus \$ on correct nutrient
- Do not over-apply
 Agronomic

Crop Uptake and Removal

		P2	0 ₅	K	2 <mark>0</mark>
Сгор	Yield	Uptake	Removal	Uptake	Removal
			Pounds	per acre	
Wheat	80 bu	54	40	184	28
Corn	180 bu	102	79	240	52
Soybeans	40 bu	38	32	144	56
Sweet Potatoes	400 bu	68	52	295	224
Tomatoes	40 tons	87	68	463	288

Supplying Nutrients to Plants

- >Nutrient "holding" capacity is an inherent property of soil texture.
 - ✓Sand
 - ✓ Silt
 - ✓Clay

Change the Soil

- > What can we do to the soil to change chemical and physical properties the most?
 - ✓Increase productivity
 - ✓ Increase water holding capacity
 - ✓ Increase nutrient holding capacity
 - nutrients naturally

> ADD ORGANIC MATTER

ORGANIC MATTER BENEFITS SOIL IN MANY WAYS:

- Improves physical condition
- Increases water infiltration
- Decreases erosion losses
- Supplies plant nutrients
- Increases cation exchange capacity (CEC)

CLAY AND MATTER HAVI INFLUENC	ORGANIC E GREATEST E ON CEC
Clay	Organic matter
10-150 cmol(+)/ kg	200-400 cmol(+)/kg
Organic matter l	nas a higher CEC
	Note: cmol(+)/kg = mcq/100g

The Right Amount of Nutrients

- ➢Soil Testing
 - ✓ Our methodology in the lab doesn't change *Conventional
 - ✓ Still excellent way to test phosphorus and potassium
- >Nitrogen cannot accurately be tested using conventional soil testing methods.

Apply What is Needed

Soil sample

- ✓ Determines plant extractable nutrients
- ✓ Mehlich-1 extractant
- growers
- Sample for accuracy
 Be careful in conservation tillage systems

Accuracy is Key!

- > Test is only as good as your sample.
- ✓ Only about 3 oz. (10 g) of soil represents 20 acres or more
- > Depth
- > UNIFORM sample = probe

- ✓ Nutrient stratification Avoid leaf litter, roots, etc.
 - But don't scrape away the top layer of soil.

Soil Tests Results

	Phosph	norus	Potassium	
County	Need Fertilizer (L and M)	No Fertilizer (H and VH)	Need Fertilizer (L and M)	No Fertilizer (H and VH)
		% of samp	les taken	
Dinwiddie	30	70	77	23
Prince George	43	57	84	16
Sussex	30	70	84	16

V.	Apply A Coope	ing Nu rative	itrients Extensi	on	
	Recor	nmeno	dations		
Crop: Soybean	15		VALUES CI	op Code : 10, 410	
Target pH = 6	.2		See Notes: 1	2,4	
Possible Trace	Element Need: Mr	(see page 9) a	and Mo (when soil	$\rm pH < 5.8)$	
	0.77	Fertiliz	zer Recommendati	ons (lb/A)	
	Level	Ν	P ₂ O ₅	K2O	
	L		80 - 120	80 - 120	
	М	0	40 - 80	40 - 80	
	н		20 - 40	20 - 40	
	VH		0	0	

Fertilizer Amounts

>There is no "Magic" product. >Plant metabolism and cell structures dictate that so much of each nutrient is needed.

Fertilizer Amounts

- For example:
- > 144 K₂O/acre uptake need to produce 40 bushel soybeans per acre
- > A foliar spray = 2 lbs. equivalent $K_2O/acre$
- > Where MUST the other 142 lbs, K₂O/acre

Fertilizer Amounts

- For example:
- > 144 $K_2O/acre$ uptake need to produce 40 bushel soybeans per acre
- > A foliar spray = 2 lbs. equivalent K₂O/acre
- > Where MUST the other 142 lbs. K₂O/acre
 - ✓The Soil
 - ✓ Fertilizer

Fertilizer Amounts

- But, a foliar feed is more efficient?
 - ✓ True Foliar products are more efficient
 - ✤Unit taken up versus unit applied 2 lbs. K₂O/acre x 90% efficient = 1.8 lbs./acre uptake
 - □ 0.2 lbs./acre "banked" in the soil for next crop □ 142.8 lbs. K₂O/acre removed from soil
- > Soil fertilizers
 - ✓ Maybe less "efficient" for that particular crop, but are much cheaper and are "banked" in the soil for future years.
 - +80 lbs. K₂O/acre x 70% efficient = 56 lbs K₂O/acre uptake ■24 lbs. K₂O/acre "banked" in the soil for next crop ■88 lbs. K₂O/acre removed from soil

Overall...

- Phosphorus and potassium are pretty easy to manage.
 - ✓ Follow your soil test recommendations. ✓ Put the right amount in the right place.
- > Sulfur and nitrogen are a different story ✓Mobile in the soil system

Nitrogen Fertilizer **Considerations**

- > The most difficult nutrient to manage, especially in conservation tillage systems.
- >4-R's of fertilizer management.
 - ✓ Right Rate.
 - ✓ Right Application Method.
 - ✓ Right Source.
 - ✓ Right Timing.

- conservation tillage systems when converting from conventional tillage.
- Eventually, less nitrogen is needed. ✓ Organic matter cycling.

ORGANIC MATTER DECOMPOSITION

- Will eventually increase soil supplies of most nutrients
- Will temporarily tie up soil N when a high C residue is incorporated
- Adjust N rates as necessary based on the age of your system.
- Based on amounts of biomass added.
- Soil Organic matter will eventually
- release nitrogen.

Nitrogen Fixation

- Soil microbes utilize nitrogen to break down organic matters in soil.
- They are "competition" for plant fertilizer uptake.
- The more time you give them, the more nitrogen microbes will consume and "tie up" in organic matter.

Nitrogen Timing

- The Key: Apply nitrogen as close as you can for plant uptake
 - ✓ Higher fertilizer use efficiency
 - ✓ Higher yields
 - ✓Larger profits
 - $\checkmark {\sf Less}$ nitrogen lost to the environment
- > But not too much or too late...
- ✓Lower yields
 ✓Lower fertilizer use efficiency

Nitrogen Source

➤Conventional Tillage:

- ✓ Nitrogen source really does not matter.
- ✓ IF APPLIED PROPERLY (Timing).
 - *"Traditional fertilizers"
 - Ammonium nitrate
 - Calcium nitrate
 - Urea-ammonium nitrate
- >Conservation tillage
 - ✓ Urea containing sources may see reduced efficiency if not managed properly.

Problems with Nitrogen

➤Volatilization

- ✓ Important with urea containing fertilizers
 ◆Liquid urea-ammonium nitrate (30% N)
 ◆Enzymes on crop residue break down urea
 - Problem in no-tillage systems

Problems with Nitrogen

Volatilization

✓ Important with urea containing fertilizers
 ◆Liquid urea-ammonium nitrate (UAN; 30% N)
 ◆Enzymes on crop residue break down urea
 ◆Problem in no-tillage systems

 $(NH_2)_2CO + H_2O \xrightarrow{urease} NH_3 + H_2NCOONH \rightarrow 2NH_{3(gas)} + CO_{2(gas)}$

Nitrogen Source

- ≻Additives.
 - ✓ Urease inhibitors (NBPT).
 - ✓Nitrification inhibitors (DCD).
- Slow release fertilizers.
 - ✓Aid in fertilizer application timing.
 - ✓ Match plant uptake pattern.
 - ✓ Fewer trips across the field.
 - ✓ Increased fertilizer use efficiency.

Wheat Study

Average Total N Uptake

57 lbs N/Ac 10% incr. 67 lbs N/A

Subsurface Band

✓Costs?

80

70

60

50 40

30

20

10

Broadcast

Total N Uptake (Ibs N/Ac)

Right Application Method

- Reduce nitrogen contact with residue because of urease
- Place the nitrogen under the crop residue
 Reduce losses from:

♦Volatilization

- Soil test for phosphorus and potassium.
- Nitrogen is the hardest nutrient to manage.
- Make sure you use the proper nitrogen rate based on your system's age.
- Place N properly to avoid urease issues.
- > Use sources/additives to decrease urease losses.
- > Time N to match crop uptake pattern.

Contact:

- ≻Mark Reiter
- ≻ Virginia Tech Eastern Shore AREC, Painter, Virginia
- >757-414-0724 ext. 16
- ≻mreiter@vt.edu

	Soil T	ests R	esults		
	Phosp	horus	Potassium		
County	Need Fertilizer (L and M)	No Fertilizer (H and VH)	Need Fertilizer (L and M)	No Fertilizer (H and VH)	
		% of sam	ples taken		
Chesapeake	39	61	73	27	
Isle of Wight	25	75	77	23	
Southampton	21	79	91	9	
Suffolk	22	78	75	25	
Virginia Beach	18	82	57	43	
			()	/irginia Tech, 2009)	

		Lime	
County	Need Lime pH below 6.0	Optimal pH Range 6.0 to 7.0	High pH Problems pH above 7.0
		% of samples taken-	
Chesapeake	53	41	
Isle of Wight	26	70	
Southampton	26	71	
Suffolk	29	66	
Virginia Beach	54	45	

> Low soil test phosphorus

Problems with Nitrogen

> Immobilization increased in no-tillage

- ✓ Microbes assimilate nitrogen fertilizer
- ✓ Their bodies C:N = 8:1

*8 parts carbon to 1 part nitrogen

- ✓ Corn stover C:N ~ 65:1
- ✓ Microbes need the fertilizer nitrogen to equilibrate the C:N ratio.

Fertiliz	zer Speed	ds Mat	urity
A A A A	Silked, July 21, % Yield, bu/A	Rate N-P ₂ 0 300-150-0 300-150-200 4 151	42 188
	First pick, % Lint yield, lb/A	Rate N-P ₂ 0-50-50 66 1,896	D ₂ -K ₂ O, Ib/A <u>100-50-50</u> 81 2,089

Effect of Corn Yields	Balanced on Water	Fertility an Use Efficie
Fertility	Yield,	Water use
		efficiency, bu/m
Low	/6	3.1
Medium	149	6.0
High	240	9.6
125 inches of water		
25 filenes of water		